Trigeminal Cardiac Reflex and Cerebral Blood Flow Regulation
نویسندگان
چکیده
The stimulation of some facial regions is known to trigger the trigemino-cardiac reflex: the main stimulus is represented by the contact of the face with water. This phenomenon called diving reflex induces a set of reactions in the cardiovascular and respiratory systems occurring in all mammals, especially marine (whales, seals). During the immersion of the face in the water, the main responses are aimed at reducing the oxygen consumption of the organism. Accordingly reduction in heart rate, peripheral vasoconstriction, blood pooling in certain organs, especially the heart, and brain and an increase in blood pressure have been reported. Moreover, the speed and intensity of the reflex is inversely proportional to the temperature of the water: more cold the water, more reactions as described are strong. In the case of deep diving an additional effect, such as blood deviation, has been reported: the blood is sequestered within the lungs, to compensate for the increase in the external pressure, preventing them from collapsing. The trigeminal-cardiac reflex is not just confined to the diving reflex; recently it has been shown that a brief proprioceptive stimulation (10 min) by jaw extension in rats produces interesting effects both at systemic and cerebral levels, reducing the arterial blood pressure, and vasodilating the pial arterioles. The arteriolar dilation is associated with rhythmic diameter changes characterized by an increase in the endothelial activity. Fascinating the stimulation of trigeminal nerve is able to activate the nitric oxide release by vascular endothelial cells. Therefore, the aim of this review was to highlight the effects due to trigeminal cardiac reflex induced by a simple mandibular extension. Opposite effects, such as hypotension, and modulation of cerebral arteriolar tone, were observed, when these responses were compared to those elicited by the diving reflex.
منابع مشابه
Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملRole of Local Nerves and Prostaglandins in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in the Rabbit
The mechanisms underlying cerebral vasodilatation during hypercapnia are not fully understood. To examine the role of nerves and prostaglandins in the regulation of basal blood flow and in hypercapnia-induced vasodilatation in the cerebral blood vessels of rabbit.Cerebral blood flow was measured by laser Doppler flow-meter in 18 NZW rabbits anesthetized with sodium pentobarbital. Tetrodetoxin ...
متن کاملCardiac autonomic control in neurosurgery the example of trigemino-cardiac reflex
The trigemino-cardiac reflex (TCR) is defined as the sudden onset of parasympathetic dysrhythmia, sympathetic hypotension, apnoea or gastric hypermotility during stimulation of any of the sensory branches of the trigeminal nerve. In the present review, we summarize the knowledge about the TCR in relation to its two different ways of stimulation: (i) peripheral and (ii) central stimulation. We a...
متن کاملCEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM
Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...
متن کاملCerebral blood flow during supine rest and the first minute of head-up tilt in patients with orthostatic intolerance.
AIM To assess the cerebral blood flow velocity during the first minute of head-up tilt in patients with postural tachycardia syndrome (POTS) or neurally-mediated reflex syncope compared with patients with dizziness. METHODS We evaluated 120 patients selected from 470 patients who underwent head-up tilt testing: 40 with POTS, 40 with typical neurally-mediated reflex syncope and 40 who complain...
متن کامل